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Phase Behavior of Hard Particles 
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The phase behavior of hard particles and mixtures thereof is reviewed. Special 
attention is given to a lattice model consisting of hard hexagons and points on 
a triangular lattice. This model appears to have two disordered phases and an 
ordered phase. 
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1. I N T R O D U C T I O N  

In the 1940s Onsager provided the first rigorous treatment of an order -  
disorder transition in a system of hard particles. He showed that infinitely 
thin hard rods can order from an isotropic phase into a nematic phase. ~1'2~ 
In the same period, Onsager presented his famous solution of the 2D Ising 
model. ~3~ This work had a profound influence on the thinking about  phase 
transitions. Against this dual background we considered it appropriate to 
present in this volume, dedicated to the scientific legacy of Lars Onsager, 
a review of the phase behavior of hard particles, with an emphasis on a 
hard-core lattice model. In Section 2 we discuss several types of phase 
behavior that can occur for systems containing only one type of hard 
particle and for binary mixtures of these. In Section 3 we present a lattice 
model containing two types of hard particles. Recently, we provided 
numerical evidence that this model has two disordered phases and an 
ordered phase. ~14) 

2. PHASE BEHAVIOR OF HARD PARTICLES 

It may  seem rather academic to study hard particles, since hard atoms 
do not exist in reality. Hard  potentials are convenient, both for theoretical 
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studies and for computer simulations, however, and as a result of this many 
studies of such particles have appeared. Moreover, systems of hard par- 
ticles do have properties similar to those of real atoms, for instance, the 
structure of liquids near the triple point is largely determined by the 
repulsive part of the interaction potential. ~5"6~ Finally, it is possible to 
prepare colloidal particles with a harshly repulsive interparticle poten- 
tial. t7-91 Onsager has shown that the thermodynamic properties of disper- 
sions of such hard particles are equivalent to those of hard atoms, t1~ 
Therefore such dispersions can serve as a testing ground for the above- 
mentioned theoretical results. ~2) 

When discussing the phase behavior of hard particles we distinguish 
for convenience three categories of phase behavior: ordering transitions in 
monodisperse systems, equilibria involving more than one ordered phase 
in bidisperse systems, and finally transitions of the gas-liquid type in 
bidisperse systems. Monodisperse systems of hard, convex particles 
generally show an ordering transition on increasing the number density of 
particles. As a first example, thin, hard rods will undergo a transition from 
an isotropic phase into a nematic phase on increasing volume fraction. This 
implies that at sufficiently high density the nematic phase has a higher 
entropy than the isotropic phase. This may seem counterintuitive, since 
the nematic phase has of course a lower orientational entropy than the 
isotropic phase. The rods are packed more efficiently in the nematic phase, 
however, leading to an increase of "excluded volume" entropy that out- 
weighs the loss of configurational entropy. In general, one has to be very 
careful in applying such qualitative arguments. In this particular case, 
however, the arguments can be made precise. This was done already by 
Onsager, who presented a theory that becomes exact in the limit of 
infinitely thin, hard rods. ~21 Several colloidal systems are known to show an 
isotropic-nematic transition upon increasing concentration (see ref. 13 for 
a review). In general, these dispersions are charge-stabilized, implying that 
the interactions are not truly hard. Recently Buining et  al. have synthesized 
sterically stabilized rods that presumably have an almost hard interac- 
tion. tgl These particles indeed exhibit a nematic phase. ~14) 

Another model system showing an isotropic-ordered transition is the 
hard-sphere system. Alder and Wainwright provided evidence for this 
transition t'5~ and Hoover and Ree determined the coexisting densities. It61 
Recent calculations using the density functional formalism yield quantitative 
agreement with computer simulations, t~7~ Again the stability of the ordered 
phase is due to the "excluded volume" entropy. The freezing transition has 
been observed experimentally in systems of (almost) hard colloidal par- 
ticles by several workers. A comprehensive set of observations was 
presented by Pusey and van Megen. It8't91 
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Monodisperse systems may show more than one ordered phase. An 
example of this is the phase diagram of hard spherocylinders, studied with 
computer simulations by Frenkel and coworkers, t2~ Both a nematic 
phase and a smectic A phase are predicted to occur for suitable values of 
length-to-width ratio and particle number density. At high density a crys- 
talline phase is predicted to be most stable. It has been known for a long 
time that layered structures may be observed in solutions of tobacco 
mosaic  virus, t22"23) Recently, it was demonstrated that, at appropriate con- 
ditions of concentration and ionic strength, this layering is due to smectic 
A ordering, t:4~ 

We shall now consider the ordered phases occuring in bidisperse 
mixtures of hard particles. Mixtures of hard spheres appear to have 
received the most attention so far. From computer simulations it is pre- 
dicted that, for size ratios ct close to one, a substitutionally disordered fcc 
(or hcp) crystal will form, whereas for a ~< 0.875 the particles are no longer 
miscible in the solid phase in all proportions, t'-5~ A simple theoretical model 
by Bartlett, assuming no miscibility in the solid phase, leads to a similar 
prediction for the phase diagram at ct=0.85. ~26) The situation becomes 
more complicated when ~ ~-0.6. Experiments using colloidal hard spheres 
with ~--0.61 and ct--0.58 have yielded the striking observation that, in 
addition to crystals consisting of only one of the two components, the more 
complex crystal structures AB 2 and ABe3 can be obtained (with A the 
larger type of sphere), tz7,2s) Recent computer simulations have confirmed 
the thermodynamic stability of these crystalline phases, t29'3~ It has been 
argued that the entropy of mixing plays a decisive role in determining the 
stability of the AB13 phase. ~3~ 

A second model system showing two ordered phases is a binary 
mixture of hard rods. For a length ratio L2/LI > 3.2 two nematic phases 
are predicted to form. t3z~ Preliminary experiments by Buining and 
Lekkerkerker provide evidence for such a coexistence, t14~ 

In addition to the presence of several ordered phases, for binary 
mixtures of hard particles it is also necessary to address the possibility 
of observing a gas-liquid-type transition. A well-known model system 
showing such a transition is the Widom-Rowlinson model. ~33~ This model 
consists of two types of particles, A and B. These particles do not interact 
with particles of the same kind, but there is a hard A-B interaction. Ruelle 
provided a rigorous proof for the phase transiton in this model. 134~ This 
proof has been extended and generalized to multicomponent systems. (35'361 

In the Widom-Rowlinson model the particles have nonadditive 
diameters, since they behave as point particles in a pure system, whereas 
there is a finite excluded volume for the A-B interaction. For mixtures 
of hard spheres with additive diameters, it was generally believed that 
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fluid-fluid phase separation also requires enthalpic interactions. This belief 
was supported by the work of Lebowitz and Rowlinson, who demonstrated 
that hard-sphere mixtures are stable within the Percus-Yevick approxima- 
tion and using the compressibility theorem to calculate thermodynamic 
quantities/37'38) This case was reopened by Biben and Hansen, who 
observed that for ct ~<0.2 these mixtures do become unstable within the 
Rogers-Young closure of the Ornstein-Zernike equation, t39~ A simple 
free-volume treatment of this problem was given by Lekkerkerker and 
Stroobants, who again predicted a spinodal instability/4~ Experiments 
using colloidal hard spheres with ~=0.16 also provided evidence for an 
instability, t4~ The nature of the concentrated phase could not be deter- 
mined, however. 

In fact, the presence of an instability does not imply that a gas-liquid- 
type transition will actually occur. It may be that the latter is preemptied 
by the fluid-solid transition. The calculation of the full phase diagram for 
hard-sphere mixtures is a topic of current interest, the main question being 
whether two disordered phases, as well as an ordered phase, may exist. 
This calculation is not an easy task since small size ratios have to be 
considered. This complicates both theoretical calculations and computer 
simulations. Therefore it is worthwhile examining models that can be dealt 
with more easily, in particular lattice models. This was done by Frenkel 
and Louis. t42) They studied a lattice model consisting of small squares 
and large squares on a square lattice. They showed that this model can be 
mapped on the 2D Ising model with nearest-neighbor interactions. At zero 
magnetic field the latter model can be solved exactly, as was shown first by 
Onsager. t3'43) The addition of small squares is equivalent to the introduc- 
tion of an attraction between large squares, and a phase separation results. 
It is therefore possible to induce a gas-liquid-type transition using hard 
interactions only. 

The remainder of this paper addresses the question whether a binary 
hard-core model can be found that shows three phases: dilute disordered, 
dense disordered, and dense ordered, equivalent to gas, liquid, and solid for 
a monatomic system with attractive interactions. The model studied by 
Frenkel and Louis does not yield and ordered phase. Therefore, we take as 
starting point a lattice model that does already show an ordered phase: the 
hard-hexagon model on a triangular lattice. Baxter has solved this model 
and he has shown that it has a continuous freezing transition. ~44"45) In this 
lattice model the ordered phase is characterized by a nonzero sublattice 
order parameter. To this model small particles ("points") are added. The 
resulting lattice model appears to have received little attention so far. 
Frenkel and Louis performed some preliminary computer simulations. 
Although they observed a clear demixing, they did not find evidence for a 
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fluid-fluid transition. 142) Our calculations indicate that addition of points 
to a hard-hexagon system does indeed induce a gas-liquid-type transition, 
while the freezing transition remains present. 

3. LATTICE MODEL 

As starting point a system of hard hexagons on a triangular lattice is 
used. Baxter has solved this model and he has shown it to have a con- 
tinuous freezing transition at Pc = NI /N= 0.27639 and zc = 11.09017, where 
NI is the number of hard hexagons, N the number of lattice sites, and zc 
the activityJ 44"45) In addition to hard hexagons, our lattice model also 
contains points, which are allowed to be placed on any lattice site not 
occupied by hexagons (see Fig. 1). 

First, we discuss some thermodynamic properties of this model. It is 
shown that, in order to calculate the phase diagram, the only function 
required is p(Ni), the distribution of free lattice sites in the pure hard- 
hexagon model. This function can be measured accurately in a computer 
simulation using the "umbrella sampling" technique. Finally, the phase 
diagram obtained in this way is presented. 14~ 

3.1.  T h e r m o d y n a m i c  P r o p e r t i e s  

We consider the semi-grand canonical partition function ~(N~, z2, N) 
for a system at activity of points z2: 

~(N,,  z2, N)= ~ z~2Z(N,, N2, N) 
N 2 = 0  

(1) 

where N2 is the number of points and Z(NI,  N2, N) is the canonical parti- 
tion function. Introducing the number of free lattice points Nr, we can 
write 

Z(N, ,  U,, N) = ~' N+-! ~(Uf, N, N) (2) 
- ~ ( N f -  Uz)! N2 ! ' 

where ~(Ny, N1, N) denotes the number of realizations of N s. free lattice 
sites at fixed N t and N. Clearly, 

~(Nf, N,, N ) =  Z~ N) (3) 
N/ 



108 Van Duijneveldt and Lekkerkerker 

Fig. 1. Schematic of triangular lattice with hard hexagons and points. 

where Z~ N) is the canonical partition function of the pure hard- 
hexagon model. Subsituting Eqs. (2) and (3) in  Eq. (1) and interchanging 
the summations over N2 and N:, we obtain 

,-,~(NI, 22, N) = Z~ N) ~. p(Nf [ N,,  N)(1 + z2) u: 
N: 

= Z ~  N) S ' (N, ,  z2, N) (4) 

where p(N:] N~, N) is the probability density function for N: at fixed N~ 
and N, given by 

p(Nf [ U,, N) = Cg(Nr Ul, N)/Z~ N) 

In order to calculate thermodynamic properties of the mixture we write 

g2(N~, z_,, N ) =  - k B T l n  

= F~ N ) - k s T l n  ~'(NI, z2, N) (5) 

where F~ N) is the Helmholtz free energy of the pure hard-hexagon 
model. It is now straightforward to evaluate p~, the chemical potential of 
hard hexagons, 

I~1 = = Ft~  - (6) 
:,.,~ ap, 

and the pressure P, 

p ~ - -  
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with a=lnZ' /N and pl=N~/N, and /~o and pO are the corresponding 
values for the hard-hexagon model. As can be seen from Eqs. (5)-(7), 
calculation of thermodynamic properties of mixtures of hard hexagons and 
points only requires information about properties of the pure hard-hexagon 
model. 

For/~o and pO Baxter's results a r e  u s e d .  (451 A Monte Carlo approach 
can be used for calculating p(N il N~, N). A regular simulation will yield 
good statistics for p only for a limited range of N i. To circumvent this 
problem the method of cumulants can be used to calculate 0 "(46i 

a=f(pt)  ln(1 +z2)+ �89 g(pi)[ln(1 +z2)] 2 

+ ~h(p, )[In(1 + z2)] 3.-.  (8) 

with 

f =  (Ny)IN 

g= ( (Nf-  ( Nr) )Z)/N 

h = ( ( N f -  (Nr))3)/N 

It was found that h was not small compared to g. Therefore, in order to 
obtain accurate results it would be necessary to use a number of cumulants. 
Since the accurate calculation of higher-order cumulants is difficult in 
practice, we did not pursue this approach any further. We shall proceed 
with an alternative method for calculating a. 

3.2.  U m b r e l l a  S a m p l i n g  

Instead of examining moments of the distribution p(Nf), w e  have 
focused on determining the distribution itself. In fact, as can be seen from 
Eq. (4), it is sufficient to measure P(Nr) accurately only for large values of 
Ni( > (Ns) ) ,  as these terms make a dominant contribution to ~ ' .  A Monte 
Carlo simulation method that can meet this demand is the so-called 
umbrella sampling technique. (47'481 The implementation used here was 
developed originally to study order parameter fluctuations during crystal 
nucleation.(49'5~ 

In a conventional Monte Carlo simulation p(Ni) is determined as the 
ensemble average 

Zq e -Isu(q)~( Ni(q) -- Ny) 
P(Nr) = Zq e-/~u(q) (9) 

822/78/1-2-8 
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where q denotes the positions of all N~ hexagons, the sums are over all par- 
ticle configurations, and e -ptjcq) is the Boltzmann factor, taking either the 
value zero or one. This equation is rewritten as 

Z<, w - '  [ N s ( q ) ]  e -~U '>  w [.vs-(q)] <$(Nr(q) - ms) 
P(Ns)-  ~-~.q w - i [ N f ( q ) ]  e-/Su'qiw[Nf(q)] (lo) 

Here w[Nr(q) ] is a weight function, depending on Ny(q), that can be 
chosen arbitrarily. The Boltzmann factor is replaced by e-PUtq)w[Ni(q)l, 
producing a new, weighted ensemble and p(Ni) is now given by 

p(N<) = (a(N/(q) - Ns)/wrNl(q)] >., (11 ) 
( l /w [Ns.(q)] )>,,, 

where the subscript w denotes an average in the modified ensemble. The 
weight function is chosen such that high values of N i are sampled preferen- 
tially. This is done by first measuring P(Ni) is an unweighted calculation. 
The next simulation is then done on a small window of N s values (typically 
10-25 values), just outside the range of the previous calculation, using w = 
1/p(Ns), where p(Ny) is extrapolated into the new window. The use of 
windows implies that the proper normalization for p is lost. Therefore a 
polynomial fit of In p(Ns) is used to connect the new results for p with the 
previous ones. This procedure is repeated until the total Nr range spanned 

Fig. 2. 
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Regular Monte Carlo result for In P(Ni) at L = 24 and N~ = 90 (dashed line; shifted 
by -50) and umbrella sampling result (full line). 
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by the separate windows is sufficiently large. A discussion of the advantage 
of using several windows is included in ref. 49. 

An example of the results obtained with umbrella sampling is shown 
in Fig. 2. A lattice of size L x L = N was used with periodic boundary 
conditions. The measured P(Nc) is plotted for Nj = 90 and L = 24. Whereas 
the conventional Monte Carlo result spans only a limited range of Nr, the 
umbrella sampling result can be extended, in principle, to arbitrarily large 
N s (note, however, that there is of course an upper bound to the values of 
Nr that can be realized). 

3.3. Results 

The distribution p(N1) was measured, using the umbrella sampling 
technique, for lattices of size L • L = N with L = 24 and L = 48. Results for 
a/ln(1 +z2) are given in Fig. 3 for z2= 1.4. The difference between L = 2 4  
and L = 48 results is found to be rather small. For comparison the result 
of using the first term of the cumulant expansion (8) is included in Fig. 3 
(lower curve). In this approximation, a/ln(1 + z 2 ) =  (Ns)/N, the average 
fraction of free lattice sites. 

In order to apply Eqs. (6) and (7), a polynomial in p~ was fitted to 
a/ln(1 + z2) under the constraint that the two limiting slopes at p~ = 0 and 
Pz = 1/3 would have their values in the thermodynamic limit, - 7 and - 1, 

1.0 

0.8 

+ 0.6 

b 0.4 

0.2 

0.0 
0.0 

pc 

0.1 0.2 0.3 
,ol 

Fig. 3. Umbrella sampling results for a / ln( l+z_, ) ,  drawn for z2=  1.4 (squares) and first 
cumulant approximation (8) (circles). Full symbols, L = 24; open symbols, L = 48. Full and 
short-dashed lines are polynomial fits of order nine to L = 24 data. Limiting slopes - 7  and 
- 1 are indicated by medium-dashed lines and the critical density Pc by a vertical dashed line. 
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Fig. 4. Phase diagram in (z I, z2) plane of hard-hexagon and point mixtures obtained from 
simulation results with L = 4 8  (full line), L = 2 4  (dashed line), and result of first-cumu]ant 
approximation (8) for L = 24 (short-dashed line). Critical points are indicated by circles and 
the fluid, gas, liquid, and solid phases by their first letter. 

respectively. F o r  L = 24 a 9-degree po lynomia l  was used to represent 44 
da ta  points  and for L = 48 a 14-degree po lynomia l  to represent  69 points. 
Coexistence was calculated by equat ing bo th /~ l  and P for the two phases. 

The resulting phase d iagram is presented in Fig. 4 as a function of the 
activities Zl and z2. It has been calculated for L = 24 and for L = 48, as well 
as for the f i rs t-cumulant  app rox ima t ion  with L = 24. In all three cases a 
three-phase equi l ibr ium gas - l iqu id - so l id  is observed. The critical point  and 
triple point  locat ions are repor ted in Table  I. The f i rs t-cumulant  
approx ima t ion  is seen to overest imate  the tendency to phase separate.  
Because in this approx ima t ion  (&a/gpt)o.=,,c "~0, the freezing t ransi t ion 
remains pract ical ly at  fixed z~. 

The phase d iagram for L = 48 is plot ted again in Fig. 5, represented in 
the p t-z,_ plane. The coexistence curve has a ra ther  peculiar  shape, as 

Table I. Results for  the  Cri t ical  Point  and the  Tr iple  Point  

Critical point Triple point 

Calculation z I -2 -~ -2 

First cumulant 8.51 1.09 11.5 1.29 
L = 24 13.3 1.36 22.5 1.89 
L=48 14.1 1.33 26.4 2.04 



Phase Behavior of Hard Particles 113 

2.5  r 

2.0 

1.5 

1.0 
0 .0  

C S 

F 

0 . ' ~ - ~  ~ "7"- 0.2 0 .3  

Pt 

Fig. 5. Phase diagram in (pt ,zz)  plane obtained from simulation results with L = 4 8  (full 
lines). The tie-line at three-phase equilibrium is drawn as well. Fluid, gas, liquid, and solid 
phases are indicated by their first letter. 
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Fig. 6. Pressure as function of l/p~, calculated from simulation results with L = 4 8 ,  
for z~= 1.75. Coexisting densities (squares) are connected with a full line and metastable 
coexisting densities (circles) with a dashed line. 
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Fig. 7. Pressure as function of l/pj, calculated from simulation results with L=48, for 
z 2 = 2. Coexisting densities (squares) are connected with a full line and metastable coexisting 
densities (circles) with a dashed line. 

though there is a tendency toward formation of even more than three 
phases. These additional phases remain metastable, however. The nature of 
these additional phases at low density is not  clear. Some more information 
can be obtained by inspecting P as function of lip 1. An example for 
z2=  1.75 and L = 4 8  is shown in Fig. 6. The coexisting densities are 
indicated and a second (metastable) coexistence is shown as well. This 
metastable transition covers two spinodal points (~3P/Opj = 0 )  that would 
not be present in a more familiar, van der Waals-type pressure curve. For  
z2 = 2 a similar result is obtained (see Fig. 7). Here even two more spinodal 
points are visible near l/p l= 5. Due to the particular location of these 
points they do not result in an additional metastable transition in this 
example. 

An issue that merits some more discussion is the point referred to as 
a triple point here. It is the point where the continuous freezing transition 
meets with the first-order gas-liquid transition. Strictly speaking, the term 
"triple point" implies that there are three phases of different composit ion in 
coexistence. Actually, within the low resolution of the present calculations, 
the nature of the freezing transition cannot  be determined with certainty. 
If (02a/Op~)~,,=pc>O, the freezing transition would become first order, 
otherwise it would remain continuous. Within the limited resolution of our 
calculations it seems that the continuous transition becomes first-order at 
the triple point. 
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In summary,  our  calculat ions on small systems indicate that  the lattice 
model  presented here has two disordered phases and one ordered phase. 
Fur the r  work is needed to establish the phase d iagram in the thermo-  
dynamic  limit. 

4. C O N C L U S I O N  

The s tudy of the phase behavior  of hard particles,  pioneered by 
Onsager ,  has proven to be fruitful. A rich variety of phases has been 
observed,  especially for b inary  mixtures of hard  particles. A topic of current  
interest is the possibi l i ty of gas- l iquid- type  transi t ions occurr ing for 
bidisperse systems. We have presented a b inary  hard-core  latt ice model  and 
provided numerical  evidence that  it has two disordered phases and one 
ordered phase. However ,  it may be noted that  this model  is nonaddi t ive ,  in 
the sense that  the interact ion distance for two hexagons is two steps on the 
lattice, for two points  it is one step, and for a hexagon and a point  it is 
again two steps. The model  could have been called addit ive if the inter- 
act ion range for a hexagon and a point  were equal  to 3/2 latt ice step. 
Whether  the appearance  of a gas - l iqu id- type  t ransi t ion is possible only for 
nonaddi t ive  models  remains an open question. 
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